library(multilex)
my_email <- "gonzalo.garciadecastro@upf.edu"
ml_connect(google_email = my_email)
The function ml_responses
function retrieves participants’ responses to the questionnaire using the formr API, and joins the responses to participant- and item-level information. This function returns a tidy data frame in which each row is one participant’s response to an individual item. By default, this function updates all data. You can avoid waiting for data to be updated by setting the argument update = FALSE
, so that the last version of the data is retrieved. This will retrieve data as it was the last time ml_responses
was ran with update = TRUE
.
ml_responses() # this will update data
#> # A tibble: 930,243 x 25
#> id id_exp id_db time code study version time_stamp language item
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <date> <chr> <chr>
#> 1 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_ze~
#> 2 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_as~
#> 3 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_br~
#> 4 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_co~
#> 5 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_dr~
#> 6 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_ex~
#> 7 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_fa~
#> 8 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_fa~
#> 9 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_mo~
#> 10 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_pi~
#> # ... with 930,233 more rows, and 15 more variables: response <int>,
#> # date_birth <date>, age <dbl>, sex <chr>, postcode <chr>, edu_parent1 <chr>,
#> # edu_parent2 <chr>, doe_catalan <dbl>, doe_spanish <dbl>, doe_others <dbl>,
#> # randomisation <chr>, doe_catalan_lockdown <dbl>,
#> # doe_spanish_lockdown <dbl>, doe_others_lockdown <dbl>, dominance <chr>
ml_responses(update = FALSE) # this will retrieve data from last update
#> # A tibble: 930,243 x 25
#> id id_exp id_db time code study version time_stamp language item
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <date> <chr> <chr>
#> 1 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_ze~
#> 2 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_as~
#> 3 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_br~
#> 4 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_co~
#> 5 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_dr~
#> 6 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_ex~
#> 7 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_fa~
#> 8 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_fa~
#> 9 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_mo~
#> 10 bilexi~ phocros~ 47264 1 BL035 PhoCr~ BL-Lon~ 2019-10-22 Catalan cat_pi~
#> # ... with 930,233 more rows, and 15 more variables: response <int>,
#> # date_birth <date>, age <dbl>, sex <chr>, postcode <chr>, edu_parent1 <chr>,
#> # edu_parent2 <chr>, doe_catalan <dbl>, doe_spanish <dbl>, doe_others <dbl>,
#> # randomisation <chr>, doe_catalan_lockdown <dbl>,
#> # doe_spanish_lockdown <dbl>, doe_others_lockdown <dbl>, dominance <chr>
Several participants have filled the questionnaire more than once. All questionnaire responses included in any dataset returned by any function in MultiLex have an associated time
value. This variable indexes how many times that specific participant has filled the questionnaire (any version), including their last response. This allows to track each participant’s responses across time and perform longitudinal analyses.
By default, ml_responses
retrieves all responses. This behaviour can be changed using the longitudinal
argument. This argument takes one of the following character strings:
Setting longitudinal = "only"
is especially useful to perform repeated measures analyses. For example:
#> # A tibble: 272,156 x 25
#> id id_exp id_db time code study version time_stamp language item
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <date> <chr> <chr>
#> 1 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_ze~
#> 2 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_as~
#> 3 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_br~
#> 4 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_co~
#> 5 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_dr~
#> 6 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_ex~
#> 7 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_fa~
#> 8 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_fa~
#> 9 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_mo~
#> 10 bilexi~ bilexic~ 55966 1 BL511 BiLex~ BL-Lon~ 2019-11-16 Catalan cat_pi~
#> # ... with 272,146 more rows, and 15 more variables: response <int>,
#> # date_birth <date>, age <dbl>, sex <chr>, postcode <chr>, edu_parent1 <chr>,
#> # edu_parent2 <chr>, doe_catalan <dbl>, doe_spanish <dbl>, doe_others <dbl>,
#> # randomisation <chr>, doe_catalan_lockdown <dbl>,
#> # doe_spanish_lockdown <dbl>, doe_others_lockdown <dbl>, dominance <chr>
The values of time
in the outcome of ml_participants
and the outcome of the rest of the functions may not be identical. This is because in ml_participants
this value increases in one unit every time a given participant is sent the questionnaire, even if they do not end up filling it. In contrast, the value of time
in the rest of the functions (e.g., ml_responses
, ml_logs
) only increases when the questionnaire is filled. Since the outcome of ml_participants
is mainly intended for internal use, you don’t have to worry about this as long as you don’t try to cross the outcomes of ml_participants
and the rest of the functions.